EzCatDB: D00039

DB codeD00039
CATH domainDomain 12.130.10.10
Domain 22.60.30.10Catalytic domain
E.C.1.4.9.1
CSA2bbk
MACiEM0013

CATH domainRelated DB codes (homologues)
2.130.10.10S00852,M00329

Enzyme Name
Swiss-protKEGG

P29894P23006P22619P22641
Protein nameMethylamine dehydrogenase heavy chainMethylamine dehydrogenase heavy chainMethylamine dehydrogenase light chainMethylamine dehydrogenase light chainmethylamine dehydrogenase (amicyanin)
amine dehydrogenase
primary-amine dehydrogenase
amine: (acceptor) oxidoreductase (deaminating)
primary-amine:(acceptor) oxidoreductase (deaminating)
SynonymsMADH
EC 1.4.99.3
MADH
EC 1.4.99.3
MADH
EC 1.4.99.3
MADH
EC 1.4.99.3
Methylamine dehydrogenase subunit beta

KEGG pathways
MAP codePathways
MAP00680Methane metabolism

Swiss-prot:Accession NumberP29894P23006P22619P22641
Entry nameDHMH_PARDEDHMH_PARVEDHML_PARDEDHML_PARVE
ActivityMethylamine + H(2)O + amicyanin = formaldehyde + ammonia + reduced amicyanin.Methylamine + H(2)O + amicyanin = formaldehyde + ammonia + reduced amicyanin.Methylamine + H(2)O + amicyanin = formaldehyde + ammonia + reduced amicyanin.Methylamine + H(2)O + amicyanin = formaldehyde + ammonia + reduced amicyanin.
SubunitTetramer of two light and two heavy chains.Tetramer of two light and two heavy chains.Heterotetramer of two light and two heavy chains.Heterotetramer of two light and two heavy chains.
Subcellular locationPeriplasm.Periplasm.Periplasm.Periplasm.
Cofactor

Contains 1 tryptophan tryptophylquinone per subunit.Contains 1 tryptophan tryptophylquinone per subunit.


CofactorsSubstratesProductsintermediates
KEGG-idL00002C00218C00001C19671C00067C00014C19672
CompoundTryptophan tryptophylquinoneMethylamineH2OAmicyaninFormaldehydeNH3Reduced amicyaninAminoquinol TTQ
Typeamino acids,aromatic ring (only carbon atom),aromatic ring (with nitrogen atoms)amine groupH2Oheavy metal,peptide/proteincarbohydrateamine group,organic ionheavy metal,peptide/protein
1maeHUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mafHUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mdaHUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mdaJUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg2AUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg2EUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg2IUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg2MUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg3AUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg3EUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg3IUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mg3MUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
2bbkHUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
2bbkJUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
2madHUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
2mtaHUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1maeLUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mafLUnboundUnbound
UnboundUnboundUnboundUnboundUnbound
1mdaLBound:TRP 107-TRQ 57Unbound
Bound:_CU(chain A)UnboundUnboundUnboundUnbound
1mdaMBound:TRP 107-TRQ 57Unbound
Bound:_CU(chain B)UnboundUnboundUnboundUnbound
1mg2BBound:TRP 108-TRQ 57Unbound
Bound:_CU(chain C)UnboundUnboundUnboundUnbound
1mg2FBound:TRP 108-TRQ 57Unbound
Bound:_CU(chain G)UnboundUnboundUnboundUnbound
1mg2JBound:TRP 108-TRQ 57Unbound
Bound:_CU(chain K)UnboundUnboundUnboundUnbound
1mg2NBound:TRP 108-TRQ 57Unbound
Bound:_CU(chain O)UnboundUnboundUnboundUnbound
1mg3BAnalogue:TRP 108-TRW 57Unbound
Bound:_CU(chain C)UnboundUnboundUnboundIntermediate-analogue:TRP 108-TRW 57
1mg3FAnalogue:TRP 108-TRW 57Unbound
Bound:_CU(chain G)UnboundUnboundUnboundIntermediate-analogue:TRP 108-TRW 57
1mg3JAnalogue:TRP 108-TRW 57Unbound
Bound:_CU(chain K)UnboundUnboundUnboundIntermediate-analogue:TRP 108-TRW 57
1mg3NAnalogue:TRP 108-TRW 57Unbound
Bound:_CU(chain O)UnboundUnboundUnboundIntermediate-analogue:TRP 108-TRW 57
2bbkLBound:TRP 108-TRP 57Unbound
UnboundUnboundUnboundUnboundUnbound
2bbkMBound:TRP 108-TRP 57Unbound
UnboundUnboundUnboundUnboundUnbound
2madLBound:TRP 108-TRP 57Unbound
UnboundUnboundUnboundUnboundUnbound
2mtaLBound:TRP 108-TRQ 57Unbound
Bound:_CU(chain A)UnboundUnboundUnboundUnbound

Active-site residues
resource
PDB;1mda & Swiss-prot;P22619, P22641 & literature [30], [40], [43]
pdbCatalytic residuesModified residuescomment
1maeH                             


1mafH                             


1mdaH                             


1mdaJ                             


1mg2A                             

mutant F55A
1mg2E                             

mutant F55A
1mg2I                             

mutant F55A
1mg2M                             

mutant F55A
1mg3A                             

mutant F55A
1mg3E                             

mutant F55A
1mg3I                             

mutant F55A
1mg3M                             

mutant F55A
2bbkH                             


2bbkJ                             


2madH                             


2mtaH                             


1maeLASP 32;ASP 76;TYR 119;THR 122
TRP 57;TRP 108(Tryptophan tryptophylquinone)

1mafLASP 32;ASP 76;TYR 119;THR 122
TRP 57;TRP 108(Tryptophan tryptophylquinone)

1mdaL      ;ASP 76;TYR 117;       
TRQ 57;TRP 107(Tryptophan tryptophylquinone)
mutant D32A, T120S
1mdaM      ;ASP 76;TYR 117;       
TRQ 57;TRP 107(Tryptophan tryptophylquinone)
mutant D32A, T120S
1mg2BASP 32;ASP 76;TYR 119;THR 122
TRQ 57;TRP 108(Tryptophan tryptophylquinone)

1mg2FASP 32;ASP 76;TYR 119;THR 122
TRQ 57;TRP 108(Tryptophan tryptophylquinone)

1mg2JASP 32;ASP 76;TYR 119;THR 122
TRQ 57;TRP 108(Tryptophan tryptophylquinone)

1mg2NASP 32;ASP 76;TYR 119;THR 122
TRQ 57;TRP 108(Tryptophan tryptophylquinone)

1mg3BASP 32;ASP 76;TYR 119;THR 122
TRW 57;TRP 108(Tryptophan tryptophylquinone-phenylhydrazine)

1mg3FASP 32;ASP 76;TYR 119;THR 122
TRW 57;TRP 108(Tryptophan tryptophylquinone-phenylhydrazine)

1mg3JASP 32;ASP 76;TYR 119;THR 122
TRW 57;TRP 108(Tryptophan tryptophylquinone-phenylhydrazine)

1mg3NASP 32;ASP 76;TYR 119;THR 122
TRW 57;TRP 108(Tryptophan tryptophylquinone-phenylhydrazine)

2bbkLASP 32;ASP 76;TYR 119;THR 122
TRP 57;TRP 108(Tryptophan tryptophylquinone)

2bbkMASP 32;ASP 76;TYR 119;THR 122
TRP 57;TRP 108(Tryptophan tryptophylquinone)

2madLASP 32;ASP 76;TYR 119;THR 122
TRP 57;TRP 108(Tryptophan tryptophylquinone)

2mtaLASP 32;ASP 76;TYR 119;THR 122
TRQ 57;TRP 108(Tryptophan tryptophylquinone)


References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[7]Fig.6
[10]Scheme 1, Scheme 2, Scheme 3, p.821-823
[12]p.4962-4964
[13]Fig.6, p.3389-3390
[14]

[16]p.151-152
[17]Fig.5, p.5697-5701
[19]Fig.4, p.89
[20]Fig.3
[26]Fig.1, Fig.6
[30]Fig.13, p.144-146
[31]Scheme 2
[32]Fig.5, p.4865-4867
[36]Fig.2, p.933
[37]Fig.2, Fig.7, Fig.8, p.121-123, p.131-138
[38]Fig.2
[39]Fig.1
[40]Fig.1
[41]p.680-681
[42]Fig.2, Fig.7
[43]Fig.2, p.3098-3099
[45]

[47]Fig.3, Fig.6, p.228-230
[48]Fig.1, p.3224

references
[1]
PubMed ID3943535
JournalEur J Biochem
Year1986
Volume154
Pages383-6
AuthorsVellieux FM, Frank J, Swarte MB, Groendijk H, Duine JA, Drenth J, Hol WG
TitlePurification, crystallization and preliminary X-ray investigation of quinoprotein methylamine dehydrogenase from Thiobacillus versutus.
[2]
PubMed ID3210240
JournalJ Mol Biol
Year1988
Volume203
Pages1137-8
AuthorsChen L, Lim LW, Mathews FS, Davidson VL, Husain M
TitlePreliminary X-ray crystallographic studies of methylamine dehydrogenase and methylamine dehydrogenase--amicyanin complexes from Paracoccus denitrificans.
[3]
CommentsX-RAY CRYSTALLOGRAPHY (2.25 ANGSTROMS)
Medline ID90005420
PubMed ID2792083
JournalEMBO J
Year1989
Volume8
Pages2171-8
AuthorsVellieux FM, Huitema F, Groendijk H, Kalk KH, Jzn JF, Jongejan JA, Duine JA, Petratos K, Drenth J, Hol WG
TitleStructure of quinoprotein methylamine dehydrogenase at 2.25 A resolution.
Related Swiss-protP23006,P22641
[4]
CommentsX-RAY CRYSTALLOGRAPHY (2.25 ANGSTROMS)
Medline ID91197438
PubMed ID2085423
JournalActa Crystallogr B
Year1990
Volume46
Pages806-23
AuthorsVellieux FM, Kalk KH, Drenth J, Hol WG
TitleStructure determination of quinoprotein methylamine dehydrogenase from Thiobacillus versutus.
Related Swiss-protP23006,P22641
[5]
PubMed ID2121141
JournalBiochem Biophys Res Commun
Year1990
Volume172
Pages211-6
AuthorsChistoserdov AY, Tsygankov YD, Lidstrom ME
TitleCloning and sequencing of the structural gene for the small subunit of methylamine dehydrogenase from Methylobacterium extorquens AM1: evidence for two tryptophan residues involved in the active center.
[6]
PubMed ID1965196
JournalJ Neural Transm Suppl
Year1990
Volume32
Pages315-8
AuthorsMcIntire WS, Dooley DM, McGuirl MA, Cote CE, Bates JL
TitleMethylamine oxidase from Arthrobacter P1 as a prototype of eukaryotic plasma amine oxidase and diamine oxidase.
[7]
PubMed ID1993204
JournalBiochemistry
Year1991
Volume30
Pages1924-8
AuthorsDavidson VL, Jones LH
TitleInhibition by cyclopropylamine of the quinoprotein methylamine dehydrogenase is mechanism-based and causes covalent cross-linking of alpha and beta subunits.
[8]
PubMed ID2065680
JournalEur J Biochem
Year1991
Volume199
Pages73-8
AuthorsBurrows AL, Hill HA, Leese TA, Mcintire WS, Nakayama H, Sanghera GS
TitleDirect electrochemistry of the enzyme, methylamine dehydrogenase, from bacterium W3A1.
[9]
PubMed ID1879526
JournalFEBS Lett
Year1991
Volume287
Pages163-6
AuthorsChen LY, Mathews FS, Davidson VL, Huizinga EG, Vellieux FM, Duine JA, Hol WG
TitleCrystallographic investigations of the tryptophan-derived cofactor in the quinoprotein methylamine dehydrogenase.
[10]
PubMed ID2028257
JournalScience
Year1991
Volume252
Pages817-24
AuthorsMcIntire WS, Wemmer DE, Chistoserdov A, Lidstrom ME
TitleA new cofactor in a prokaryotic enzyme: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase.
[11]
PubMed ID1590782
JournalBiochem Biophys Res Commun
Year1992
Volume184
Pages1181-9
AuthorsChistoserdov AY, Boyd J, Mathews FS, Lidstrom ME
TitleThe genetic organization of the mau gene cluster of the facultative autotroph Paracoccus denitrificans.
[12]
CommentsX-RAY CRYSTALLOGRAPHY OF COMPLEX WITH AMICYANIN
Medline ID92287919
PubMed ID1599920
JournalBiochemistry
Year1992
Volume31
Pages4959-64
AuthorsChen L, Durley R, Poliks BJ, Hamada K, Chen Z, Mathews FS, Davidson VL, Satow Y, Huizinga E, Vellieux FM, et al
TitleCrystal structure of an electron-transfer complex between methylamine dehydrogenase and amicyanin.
Related PDB1mda
Related Swiss-protP29894,P22619
[13]
PubMed ID1554720
JournalBiochemistry
Year1992
Volume31
Pages3385-90
AuthorsDavidson VL, Jones LH, Graichen ME
TitleReactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins.
[14]
CommentsX-ray crystallography
PubMed ID1390754
JournalBiochemistry
Year1992
Volume31
Pages9789-95
AuthorsHuizinga EG, van Zanten BA, Duine JA, Jongejan JA, Huitema F, Wilson KS, Hol WG
TitleActive site structure of methylamine dehydrogenase: hydrazines identify C6 as the reactive site of the tryptophan-derived quinone cofactor.
Related PDB1mae,1maf,2mad
[15]
CommentsX-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS)
Medline ID93028362
PubMed ID1409575
JournalProteins
Year1992
Volume14
Pages288-99
AuthorsChen L, Mathews FS, Davidson VL, Huizinga EG, Vellieux FM, Hol WG
TitleThree-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans determined by molecular replacement at 2.8 A resolution.
Related Swiss-protP29894,P22619
[16]
CommentsX-ray crystallography
PubMed ID8382992
JournalProtein Sci
Year1993
Volume2
Pages147-54
AuthorsChen L, Mathews FS, Davidson VL, Tegoni M, Rivetti C, Rossi GL
TitlePreliminary crystal structure studies of a ternary electron transfer complex between a quinoprotein, a blue copper protein, and a c-type cytochrome.
Related PDB2mta
[17]
PubMed ID8180195
JournalBiochemistry
Year1994
Volume33
Pages5696-701
AuthorsBrooks HB, Davidson VL
TitleKinetic and thermodynamic analysis of a physiologic intermolecular electron-transfer reaction between methylamine dehydrogenase and amicyanin.
[18]
PubMed ID8020493
JournalEur J Biochem
Year1994
Volume222
Pages561-71
AuthorsUbbink M, Hunt NI, Hill HA, Canters GW
TitleKinetics of the reduction of wild-type and mutant cytochrome c-550 by methylamine dehydrogenase and amicyanin from Thiobacillus versutus.
[19]
CommentsX-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS)
Medline ID94188715
PubMed ID8140419
JournalScience
Year1994
Volume264
Pages86-90
AuthorsChen L, Durley RC, Mathews FS, Davidson VL
TitleStructure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c551i.
Related Swiss-protP29894,P22619
[20]
PubMed ID7626645
JournalBiochemistry
Year1995
Volume34
Pages9748-54
AuthorsGorren AC, de Vries S, Duine JA
TitleBinding of monovalent cations to methylamine dehydrogenase in the semiquinone state and its effect on electron transfer.
[21]
PubMed ID7548050
JournalBiochemistry
Year1995
Volume34
Pages12926-31
AuthorsGorren AC, Moenne-Loccoz P, Backes G, de Vries S, Sanders-Loehr J, Duine JA
TitleEvidence for a methylammonium-binding site on methylamine dehydrogenase of Thiobacillus versutus.
[22]
PubMed ID8524150
JournalMethods Enzymol
Year1995
Volume258
Pages191-216
AuthorsMathews FS
TitleX-ray studies of quinoproteins.
[23]
PubMed ID8679563
JournalBiochemistry
Year1996
Volume35
Pages8120-5
AuthorsDavidson VL, Jones LH
TitleElectron transfer from copper to heme within the methylamine dehydrogenase--amicyanin--cytochrome c-551i complex.
[24]
PubMed ID8664261
JournalBiochemistry
Year1996
Volume35
Pages4713-20
AuthorsMoenne-Loccoz P, Nakamura N, Itoh S, Fukuzumi S, Gorren AC, Duine JA, Sanders-Loehr J
TitleElectrostatic environment of the tryptophylquinone cofactor in methylamine dehydrogenase: evidence from resonance Raman spectroscopy of model compounds.
[25]
PubMed ID8621571
JournalJ Biol Chem
Year1996
Volume271
Pages9177-80
AuthorsMerli A, Brodersen DE, Morini B, Chen Z, Durley RC, Mathews FS, Davidson VL, Rossi GL
TitleEnzymatic and electron transfer activities in crystalline protein complexes.
[26]
CommentsX-ray crystallography
PubMed ID9354627
JournalBiochemistry
Year1997
Volume36
Pages13586-92
AuthorsBishop GR, Davidson VL
TitleCatalytic role of monovalent cations in the mechanism of proton transfer which gates an interprotein electron transfer reaction.
[27]
PubMed ID9335529
JournalBiochemistry
Year1997
Volume36
Pages12733-8
AuthorsDavidson VL, Jones LH, Graichen ME, Mathews FS, Hosler JP
TitleFactors which stabilize the methylamine dehydrogenase-amicyanin electron transfer protein complex revealed by site-directed mutagenesis.
[28]
PubMed ID9748238
JournalJ Biol Chem
Year1998
Volume273
Pages25703-12
AuthorsLabesse G, Ferrari D, Chen ZW, Rossi GL, Kuusk V, McIntire WS, Mathews FS
TitleCrystallographic and spectroscopic studies of native, aminoquinol, and monovalent cation-bound forms of methylamine dehydrogenase from Methylobacterium extorquens AM1.
[29]
PubMed ID9603931
JournalJ Biol Chem
Year1998
Volume273
Pages14254-60
AuthorsZhu Z, Davidson VL
TitleRedox properties of tryptophan tryptophylquinone enzymes. Correlation with structure and reactivity.
[30]
PubMed ID9514722
JournalJ Mol Biol
Year1998
Volume276
Pages131-49
AuthorsChen L, Doi M, Durley RC, Chistoserdov AY, Lidstrom ME, Davidson VL, Mathews FS
TitleRefined crystal structure of methylamine dehydrogenase from Paracoccus denitrificans at 1.75 A resolution.
Related PDB2bbk
[31]
PubMed ID10830100
JournalBiochem Soc Trans
Year1999
Volume27
Pages767-79
AuthorsScrutton NS
TitleColworth Medal Lecture. Enzymes in the quantum world.
[32]
PubMed ID10200175
JournalBiochemistry
Year1999
Volume38
Pages4862-7
AuthorsZhu Z, Davidson VL
TitleIdentification of a new reaction intermediate in the oxidation of methylamine dehydrogenase by amicyanin.
[33]
PubMed ID10845365
JournalAnal Chem
Year2000
Volume72
Pages2211-5
AuthorsZeng K, Tachikawa H, Zhu Z, Davidson VL
TitleAmperometric detection of histamine with a methylamine dehydrogenase polypyrrole-based sensor.
[34]
PubMed ID10913294
JournalBiochemistry
Year2000
Volume39
Pages8830-6
AuthorsZhu Z, Jones LH, Graichen ME, Davidson VL
TitleMolecular basis for complex formation between methylamine dehydrogenase and amicyanin revealed by inverse mutagenesis of an interprotein salt bridge.
[35]
PubMed ID10985763
JournalBiochemistry
Year2000
Volume39
Pages11184-6
AuthorsZhu Z, Sun D, Davidson VL
TitleConversion of methylamine dehydrogenase to a long-chain amine dehydrogenase by mutagenesis of a single residue.
[36]
JournalJ Am Chem Soc
Year2000
Volume122
Pages931-8
AuthorsSingh V, Zhu Z, Davidson VL., McCracken J
TitleCharacterization of the Tryptophyl-Semiquinone Catalytic Intermediate of Methylamine Dehydrogenase by Electron Spin-Echo Envelope Modulation Spectroscopy.
[37]
PubMed ID11192720
JournalSubcell Biochem
Year2000
Volume35
Pages119-43
AuthorsDavidson VL
TitleMethylamine dehydrogenase. Structure and function of electron transfer complexes.
[38]
PubMed ID11591147
JournalBiochemistry
Year2001
Volume40
Pages12285-91
AuthorsSun D, Davidson VL
TitleRe-engineering monovalent cation binding sites of methylamine dehydrogenase: effects on spectral properties and gated electron transfer.
[39]
PubMed ID11525672
JournalJ Am Chem Soc
Year2001
Volume123
Pages8604-5
AuthorsFaulder PF, Tresadern G, Chohan KK, Scrutton NS, Sutcliffe MJ, Hillier IH, Burton NA
TitleQM/MM studies show substantial tunneling for the hydrogen-transfer reaction in methylamine dehydrogenase.
[40]
PubMed ID11087744
JournalJ Biol Chem
Year2001
Volume276
Pages6234-42
AuthorsBasran J, Patel S, Sutcliffe MJ, Scrutton NS
TitleImportance of barrier shape in enzyme-catalyzed reactions. Vibrationally assisted hydrogen tunneling in tryptophan tryptophylquinone-dependent amine dehydrogenases.
[41]
PubMed ID11707614
JournalProtein Eng
Year2001
Volume14
Pages675-81
AuthorsSun D, Jones LH, Mathews FS, Davidson VL
TitleActive-site residues are critical for the folding and stability of methylamine dehydrogenase.
[42]
CommentsX-ray crystallography
PubMed ID12437349
JournalBiochemistry
Year2002
Volume41
Pages13926-33
AuthorsSun D, Chen ZW, Mathews FS, Davidson VL
TitleMutation of alphaPhe55 of methylamine dehydrogenase alters the reorganization energy and electronic coupling for its electron transfer reaction with amicyanin.
Related PDB1mg2,1mg3
[43]
PubMed ID12084049
JournalEur J Biochem
Year2002
Volume269
Pages3096-102
AuthorsSutcliffe MJ, Scrutton NS
TitleA new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes.
[44]
PubMed ID11733518
JournalJ Biol Chem
Year2002
Volume277
Pages4119-22
AuthorsWang Y, Sun D, Davidson VL
TitleUse of indirect site-directed mutagenesis to alter the substrate specificity of methylamine dehydrogenase.
[45]
PubMed ID12686138
JournalBiochim Biophys Acta
Year2003
Volume1647
Pages230-3
AuthorsDavidson VL
TitleProbing mechanisms of catalysis and electron transfer by methylamine dehydrogenase by site-directed mutagenesis of alpha Phe55.
[46]
PubMed ID12686155
JournalBiochim Biophys Acta
Year2003
Volume1647
Pages337-42
AuthorsFerrari D, Merli A, Peracchi A, Di Valentin M, Carbonera D, Rossi GL
TitleCatalysis and electron transfer in protein crystals: the binary and ternary complexes of methylamine dehydrogenase with electron acceptors.
[47]
PubMed ID12555860
JournalFaraday Discuss
Year2003
Volume122
Pages223-42; discussion 269-82
AuthorsTresadern G, Nunez S, Faulder PF, Wang H, Hillier IH, Burton NA
TitleDirect dynamics calculations of reaction rate and kinetic isotope effects in enzyme catalysed reactions.
[48]
PubMed ID12630872
JournalJ Am Chem Soc
Year2003
Volume125
Pages3224-5
AuthorsDavidson VL, Sun D
TitleEvidence for substrate activation of electron transfer from methylamine dehydrogenase to amicyanin.

comments
Trp57 is modified and covalently bonded to the sidechain of Trp108 to form a cofactor, tryptophan tryptophylquinone (TTQ).
Amicyanin (Swiss-prot;P22364) is a primary acceptor, whilst cytochrome c (Swiss-prot;P29899) is a secondary acceptor. Thus, this enzyme catalyzes the following reactions (see [30], [37]):
(A) Exchange of double-bonded atoms (carbonyl bond by amine; Schiff-base formation), releasing H2O:
(B) Isomerization (shift of double-bond position):
(C) Exchange of double-bonded atoms (Schiff-base deformation by water), giving aldehyde product and aminoquinol TTQ:
(D) Electron transfer from aminoquinol TTQ to copper of the primary acceptor protein, amicyanin, leading to formation of aminosemiquinone TTQ:
(E) Exchange of double-bonded atoms (Schiff-base deformation by water), giving TTQ and ammonia:
The transferred electron is transferred further to Heme group of the secondary acceptor, cytochrome c.

createdupdated
2005-05-302012-10-03


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2010)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)

© Computational Biology Research Center, AIST, 2004 All Rights Reserved.