EzCatDB: D00417

DB codeD00417
RLCP classification3.1147.6010.88
3.133.90010.393
CATH domainDomain 13.90.550.10Catalytic domain
Domain 22.160.10.10Catalytic domain
E.C.2.7.7.23,2.3.1.157
CSA1hv9

CATH domainRelated DB codes (homologues)
2.160.10.10D00464,S00167,D00094
3.90.550.10S00709,S00465,S00466,D00859,D00860,T00415

Enzyme Name
Swiss-protKEGG

P0ACC7Q97R46
Protein nameBifunctional protein glmUBifunctional protein glmUUDP-N-acetylglucosamine diphosphorylase
   (EC 2.7.7.23)

UDP-N-acetylglucosamine pyrophosphorylase
   (EC 2.7.7.23)

uridine diphosphoacetylglucosamine pyrophosphorylase
   (EC 2.7.7.23)

UTP:2-acetamido-2-deoxy-alpha-D-glucose-1-phosphateuridylyltransferase
   (EC 2.7.7.23)

UDP-GlcNAc pyrophosphorylase
   (EC 2.7.7.23)

GlmU uridylyltransferase
   (EC 2.7.7.23)

Acetylglucosamine 1-phosphate uridylyltransferase
   (EC 2.7.7.23)

UDP-acetylglucosamine pyrophosphorylase
   (EC 2.7.7.23)

uridine diphosphate-N-acetylglucosamine pyrophosphorylase
   (EC 2.7.7.23)

uridine diphosphoacetylglucosamine phosphorylase
   (EC 2.7.7.23)

acetylglucosamine 1-phosphate uridylyltransferase
   (EC 2.7.7.23)

glucosamine-1-phosphate N-acetyltransferase
   (EC 2.3.1.157)

SynonymsNoneNone
IncludesUDP-N-acetylglucosamine pyrophosphorylase
   EC 2.7.7.23
N-acetylglucosamine-1-phosphate uridyltransferase
Glucosamine-1-phosphate N-acetyltransferase
   EC 2.3.1.157
UDP-N-acetylglucosamine pyrophosphorylase
   EC 2.7.7.23
N-acetylglucosamine-1-phosphate uridyltransferase
Glucosamine-1-phosphate N-acetyltransferase
   EC 2.3.1.157

KEGG pathways
MAP codePathwaysE.C.
MAP00530Aminosugars metabolism2.7.7.23,2.3.1.157

Swiss-prot:Accession NumberP0ACC7Q97R46
Entry nameGLMU_ECOLIGLMU_STRPN
ActivityAcetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + N-acetyl-alpha-D-glucosamine 1-phosphate.,UTP + N-acetyl-alpha-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-D-glucosamine.Acetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + N-acetyl-alpha-D-glucosamine 1-phosphate.,UTP + N-acetyl-alpha-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-D-glucosamine.
SubunitHomotrimer. In vivo forms an hexameric aggregate.Homotrimer.
Subcellular locationCytoplasm.Cytoplasm.
CofactorBinds 1 magnesium ion per subunit. Can also use cobalt ions to a lesser extent.Binds 1 magnesium ion per subunit. Can also use calcium ion to a lesser extent.


CofactorsSubstratesProducts
KEGG-idC00305C00075C04501C00024C06156C00013C00043C00010C04256
E.C.2.7.7.232.7.7.232.7.7.232.3.1.1572.3.1.1572.7.7.232.7.7.232.3.1.1572.3.1.157
CompoundMagnesiumUTPN-Acetyl-alpha-D-glucosamine 1-phosphateacetyl-CoAD-glucosamine 1-phosphatePyrophosphateUDP-N-acetyl-D-glucosamineCoAN-acetyl-D-glucosamine 1-phosphate
Typedivalent metal (Ca2+, Mg2+)amide group,nucleotideamide group,carbohydrate,phosphate group/phosphate ionamine group,carbohydrate,nucleotide,peptide/protein,sulfide groupamine group,carbohydrate,phosphate group/phosphate ionphosphate group/phosphate ionamide group,carbohydrate,nucleotideamine group,carbohydrate,nucleotide,peptide/protein,sulfhydryl groupamide group,carbohydrate,phosphate group/phosphate ion
1fwyA01UnboundUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1fwyB01UnboundUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1fxjA01UnboundUnboundUnboundUnboundUnboundAnalogue:SO4UnboundUnboundUnbound
1fxjB01UnboundUnboundUnboundUnboundUnboundAnalogue:SO4UnboundUnboundUnbound
1hv9A01UnboundUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1hv9B01Analogue:_COUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1g95A01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1g97A01Bound:_MGUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1hm0A01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm0B01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm8A01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm8B01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm9A01Analogue:_CAUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1hm9B01Analogue:_CAUnboundUnboundUnboundUnboundUnboundBound:UD1UnboundUnbound
1fwyA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1fwyB02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1fxjA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1fxjB02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hv9A02UnboundUnboundUnboundUnboundUnboundUnboundUnboundBound:COAUnbound
1hv9B02UnboundUnboundUnboundUnboundUnboundUnboundUnboundBound:COAUnbound
1g95A02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1g97A02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm0A02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm0B02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1hm8A02UnboundUnboundUnboundBound:ACOUnboundUnboundUnboundUnboundUnbound
1hm8B02UnboundUnboundUnboundBound:ACOUnboundUnboundUnboundUnboundUnbound
1hm9A02UnboundUnboundUnboundBound:ACOUnboundUnboundUnboundUnboundUnbound
1hm9B02UnboundUnboundUnboundBound:ACOUnboundUnboundUnboundUnboundUnbound

Active-site residues
resource
literature [6], [10]
pdbCatalytic residuesCofactor-binding residuesMain-chain involved in catalysiscomment
1fwyA01ARG 18;LYS 25
ASP 105;ASN 227(Magnesium binding)

 (2.7.7.23)
1fwyB01ARG 18;LYS 25
ASP 105;ASN 227(Magnesium binding)

 (2.7.7.23)
1fxjA01ARG 18;LYS 25
ASP 105;ASN 227(Magnesium binding)

 (2.7.7.23)
1fxjB01ARG 18;LYS 25
ASP 105;ASN 227(Magnesium binding)

 (2.7.7.23)
1hv9A01ARG 18;LYS 25
ASP 105;ASN 227(Magnesium binding)

 (2.7.7.23)
1hv9B01ARG 18;LYS 25
ASP 105;ASN 227(Magnesium binding)

 (2.7.7.23)
1g95A01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1g97A01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1hm0A01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1hm0B01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1hm8A01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1hm8B01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1hm9A01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1hm9B01ARG 15;LYS 22
ASP 102;ASN 227(Magnesium binding)

 (2.7.7.23)
1fwyA02       ;       ;       

       
 (2.3.1.157) active-site truncated
1fwyB02       ;       ;       

       
 (2.3.1.157) active-site truncated
1fxjA02       ;       ;       

       
 (2.3.1.157) active-site truncated
1fxjB02       ;       ;       

       
 (2.3.1.157) active-site truncated
1hv9A02GLU 349;HIS 363;SER 405

ALA 380
 (2.3.1.157)
1hv9B02GLU 349;HIS 363;SER 405

ALA 380
 (2.3.1.157)
1g95A02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1g97A02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1hm0A02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1hm0B02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1hm8A02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1hm8B02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1hm9A02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)
1hm9B02GLU 348;HIS 362;SER 404

ALA 379
 (2.3.1.157)

References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[6]p.4100-4102
[7]Fig.7, p.2863
[9]p.11851

references
[1]
CommentsIDENTIFICATION
Medline ID94012475
PubMed ID8407787
JournalJ Bacteriol
Year1993
Volume175
Pages6150-7
AuthorsMengin-Lecreulx D, van Heijenoort J
TitleIdentification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli.
Related Swiss-protP0ACC7
[2]
CommentsCHARACTERIZATION
Medline ID94364959
PubMed ID8083170
JournalJ Bacteriol
Year1994
Volume176
Pages5788-95
AuthorsMengin-Lecreulx D, van Heijenoort J
TitleCopurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis.
Related Swiss-protP0ACC7
[3]
PubMed ID7653162
JournalActa Biochim Pol
Year1995
Volume42
Pages55-9
AuthorsSzumilo H, Szumilo T, Elbein AD
TitleSynthesis of 5-IASA-UDP-GlcNAc and its use for the photoaffinity labeling of a novel UDP-GlcNAc pyrophosphorylase.
[4]
CommentsCHARACTERIZATION
Medline ID96140233
PubMed ID8555230
JournalBiochemistry
Year1996
Volume35
Pages579-85
AuthorsGehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED
TitleAcetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli.
Related Swiss-protP0ACC7
[5]
PubMed ID9733680
JournalJ Bacteriol
Year1998
Volume180
Pages4799-803
AuthorsPompeo F, van Heijenoort J, Mengin-Lecreulx D
TitleProbing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes.
[6]
CommentsX-ray crystallography
PubMed ID10428949
JournalEMBO J
Year1999
Volume18
Pages4096-107
AuthorsBrown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C, Bourne Y
TitleCrystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily.
Related PDB1fwy,1fxj
[7]
PubMed ID11124906
JournalJ Mol Biol
Year2001
Volume305
Pages279-89
AuthorsKostrewa D, D'Arcy A, Takacs B, Kamber M
TitleCrystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96 A resolution.
Related PDB1g95,1g97
[8]
PubMed ID11084021
JournalJ Biol Chem
Year2001
Volume276
Pages3833-9
AuthorsPompeo F, Bourne Y, van Heijenoort J, Fassy F, Mengin-Lecreulx D
TitleDissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth.
[9]
PubMed ID11118459
JournalJ Biol Chem
Year2001
Volume276
Pages11844-51
AuthorsSulzenbacher G, Gal L, Peneff C, Fassy F, Bourne Y
TitleCrystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture.
Related PDB1hm0,1hm8,1hm9
[10]
PubMed ID11329257
JournalBiochemistry
Year2001
Volume40
Pages1913-21
AuthorsOlsen LR, Roderick SL
TitleStructure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites
Related PDB1hv9
[11]
PubMed ID11173485
JournalActa Crystallogr D Biol Crystallogr
Year2001
Volume57
Pages296-7
AuthorsOlsen LR, Tian Y, Roderick SL
TitlePurification, crystallization and preliminary X-ray data for Escherichia coli GlmU: a bifunctional acetyltransferase/uridyltransferase.
[12]
PubMed ID12171937
JournalJ Biol Chem
Year2002
Volume277
Pages44214-9
AuthorsSivaraman J, Sauve V, Matte A, Cygler M
TitleCrystal structure of Escherichia coli glucose-1-phosphate thymidylyltransferase (RffH) complexed with dTTP and Mg2+.

comments
This protein is a bifunctional enzyme, catalyzing two sequential reactions, with two distinct domains. The first domain functions as a uridylyltransferase (EC 2.7.7.23), which catalyzes the second reaction, whilst the second domain serve as a acetyltransferase (EC 2.3.1.157) that catalyzes the first one (see [4]).
(A) Phosphoryl transfer:
Papers [6] & [7] mentioned catalytic mechanism of uridylyltransferase (EC 2.7.7.23). The paper [7] proposed a catalytic mechanism, in which transphosphorylation is assumed to proceed through SN2 mechanism.
In the proposed mechanism, the reaction proceeds as follows:
(A1) A non-esterified phosphate oxygen atom of GlcNAc-1-P makes a nucleophilic attack on the alpha-phosphate group of UTP, forming penta-coordinated phosphorane transition state with the attacking group and leaving group, pyrophosphate.
(A2) Here, the transition state might be stabilized by the positive charge of Mg2+ ion, which is bound to the oxygen atoms from the transferred alpha-phosphate group and attacking phosphate group as well as Asp102 and Asn227 (PDB;1g97), and the sidechain amino group of Lys22 (PDB;1g97). On the other hand, the leaving pyrophosphate can be stabilized by Arg15 (PDB;1g97).
(A3) The transfer reaction results in the inversion of the configuration at the alpha-phosphate group.
(B) Acyl transfer:
Paper [9] proposed a catalytic mechanism for acyltransferase (EC 2.3.1.157). According to the paper [9], the reaction proceeds as follows:
(B1) Glu348, hydrogen bonding to His362, might modulate the activity of His362.
(B2) His362 (PDB;1hm9) function as a general base, which activates the acceptor amine group of glucosamine-1-P, by abstracting a proton from the amine group.
(B3) The amine group can make a nucleophilic attack on the acyl group of acetyl-CoA.
(B4) Moreover, Ser404 as well as mainchain amide of Ala379 stabilizes the negative charge on the thioester carbonyl during the transition state.

createdupdated
2003-07-222009-04-03


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2010)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)

© Computational Biology Research Center, AIST, 2004 All Rights Reserved.