EzCatDB: M00186

DB codeM00186
CATH domainDomain 13.20.20.140Catalytic domain
Domain 2-.-.-.-
Domain 3-.-.-.-Catalytic domain
Domain 42.40.50.140
Domain 5-.-.-.-
Domain 63.30.420.10Catalytic domain
Domain 7-.-.-.-
Domain 81.10.1110.10
Domain 93.40.50.300Catalytic domain
Domain 101.20.272.10
Domain 111.10.8.60
Domain 12-.-.-.-
Domain 13-.-.-.-
Domain 143.40.50.300
Domain 151.20.272.20
Domain 161.10.8.60
Domain 173.40.50.300
Domain 181.10.8.10
Domain 191.20.272.10
Domain 203.40.50.10220
Domain 213.40.50.10110
Domain 223.10.150.10
Domain 233.10.150.10
Domain 243.10.150.10
E.C.2.7.7.7,3.1.11.1,3.6.1.3
CSA1j53

CATH domainRelated DB codes (homologues)
2.40.50.140M00220,T00050,D00291,D00294,T00254
3.20.20.140S00231,S00232,D00673,D00675,D00801,D00873,M00030,M00225,M00226
3.30.420.10M00206,T00252,M00019,M00020,M00055,M00135,M00146,M00166,M00173,M00175
3.40.50.300S00527,S00547,S00548,S00550,S00554,S00555,S00671,S00672,S00676,S00680,S00682,S00913,S00914,S00301,S00302,S00303,S00304,S00307,S00308,S00305,S00306,S00309,S00310,S00311,M00114,M00199,D00129,D00130,D00540

Enzyme Name
Swiss-protKEGG

P10443P03007P0ABS8P06710P28630P28631P28632P28905P0A988
Protein nameDNA polymerase III subunit alphaDNA polymerase III subunit epsilonDNA polymerase III subunit thetaDNA polymerase III subunit tauDNA polymerase III subunit deltaDNA polymerase III subunit delta''DNA polymerase III subunit psiDNA polymerase III subunit chiDNA polymerase III subunit betaDNA-directed DNA polymerase
   (EC 2.7.7.7)

DNA polymerase I
   (EC 2.7.7.7)

DNA polymerase II
   (EC 2.7.7.7)

DNA polymerase III
   (EC 2.7.7.7)

DNA polymerase alpha
   (EC 2.7.7.7)

DNA polymerase beta
   (EC 2.7.7.7)

DNA polymerase gamma
   (EC 2.7.7.7)

DNA nucleotidyltransferase (DNA-directed)
   (EC 2.7.7.7)

DNA nucleotidyltransferase (DNA-directed)
   (EC 2.7.7.7)

deoxyribonucleate nucleotidyltransferase
   (EC 2.7.7.7)

deoxynucleate polymerase
   (EC 2.7.7.7)

deoxyribonucleic acid duplicase
   (EC 2.7.7.7)

deoxyribonucleic acid polymerase
   (EC 2.7.7.7)

deoxyribonucleic duplicase
   (EC 2.7.7.7)

deoxyribonucleic polymerase
   (EC 2.7.7.7)

deoxyribonucleic polymerase I
   (EC 2.7.7.7)

DNA duplicase
   (EC 2.7.7.7)

DNA nucleotidyltransferase
   (EC 2.7.7.7)

DNA polymerase
   (EC 2.7.7.7)

DNA replicase
   (EC 2.7.7.7)

DNA-dependent DNA polymerase
   (EC 2.7.7.7)

duplicase
   (EC 2.7.7.7)

Klenow fragment
   (EC 2.7.7.7)

sequenase
   (EC 2.7.7.7)

Taq DNA polymerase
   (EC 2.7.7.7)

Taq Pol I
   (EC 2.7.7.7)

Tca DNA polymerase
   (EC 2.7.7.7)

exodeoxyribonuclease I
   (EC 3.1.11.1)

Escherichia coli exonuclease I
   (EC 3.1.11.1)

E. coli exonuclease I
   (EC 3.1.11.1)

exonuclease I
   (EC 3.1.11.1)

adenosinetriphosphatase
   (EC 3.6.1.3)

adenylpyrophosphatase
   (EC 3.6.1.3)

ATP monophosphatase
   (EC 3.6.1.3)

triphosphatase
   (EC 3.6.1.3)

ATPase
   (EC 3.6.1.3)

SV40 T-antigen
   (EC 3.6.1.3)

adenosine 5'-triphosphatase
   (EC 3.6.1.3)

ATP hydrolase
   (EC 3.6.1.3)

ATPase
   (EC 3.6.1.3)

complex V (mitochondrial electron transport)
   (EC 3.6.1.3)

(Ca2+ + Mg2+)-ATPase
   (EC 3.6.1.3)

HCO3--ATPase
   (EC 3.6.1.3)

adenosine triphosphatase
   (EC 3.6.1.3)

SynonymsEC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
EC 2.7.7.7
ContainsNoneNoneNoneDNA polymerase III subunit gamma
NoneNoneNoneNoneNone

KEGG pathways
MAP codePathwaysE.C.
MAP00230Purine metabolism2.7.7.7,3.6.1.3
MAP00240Pyrimidine metabolism2.7.7.7

Swiss-prot:Accession NumberP10443P03007P0ABS8P06710P28630P28631P28632P28905P0A988
Entry nameDPO3A_ECOLIDPO3E_ECOLIHOLE_ECOLIDPO3X_ECOLIHOLA_ECOLIHOLB_ECOLIHOLD_ECOLIHOLC_ECOLIDPO3B_ECOLI
ActivityDeoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1).
SubunitThe DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4].The DNA polymerase holoenzyme is a complex that contains 10 different types of subunits. These subunits are organized into 3 functionally essential subassemblies: the pol III core, the beta sliding clamp processivity factor and the clamp-loading complex. The pol III core (subunits alpha,epsilon and theta) contains the polymerase and the 3''-5'' exonuclease proofreading activities. The polymerase is tethered to the template via the sliding clamp processivity factor. The clamp-loading complex assembles the beta processivity factor onto the primer template and plays a central role in the organization and communication at the replication fork. This complex contains delta, delta'', psi and chi, and copies of either or both of two different dnaX proteins, gamma and tau. The composition of the holoenzyme is, therefore: (alpha,epsilon,theta)[2]-(gamma/tau)[3]-delta,delta'', psi,chi- beta[4]. The beta chain is a homodimer when not associated with the other components.
Subcellular locationCytoplasm.






Cytoplasm.
Cofactor
Binds 2 divalent metal cations. Magnesium or manganese.








CofactorsSubstratesProducts
KEGG-idC02148C00677C00039C00039C00001C00002C00013C00039C00039C01150C00008C00009
E.C.2.7.7.7,3.1.11.12.7.7.72.7.7.73.1.11.13.1.11.1,3.6.1.33.6.1.32.7.7.72.7.7.73.1.11.13.1.11.13.6.1.33.6.1.3
CompoundDivalent metalDeoxynucleoside triphosphateDNA(n)DNA(n+1)H2OATPPyrophosphateDNA(n+1)DNA(n)5'-PhosphomononucleotidesADPOrthophosphate
Typedivalent metal (Ca2+, Mg2+)nucleotidenucleic acidsnucleic acidsH2Oamine group,nucleotidephosphate group/phosphate ionnucleic acidsnucleic acidsnucleotideamine group,nucleotidephosphate group/phosphate ion
1j53ABound:2x_MNUnboundUnboundUnbound
UnboundUnboundUnboundAnalogue:TMP 2100Bound:TMP 2000UnboundUnbound
1j54ABound:2x_MNUnboundUnboundUnbound
UnboundUnboundUnboundUnboundBound:TMP 2000UnboundUnbound
1du2AUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2ae9AUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3A01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundAnalogue:SO4
1jr3B01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundAnalogue:SO4
1jr3C01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundAnalogue:SO4
1xxhB01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1xxhC01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundBound:PO4
1xxhD01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1xxhG01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1xxhH01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundBound:PO4
1xxhI01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1xxiB01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundBound:ADPUnbound
1xxiC01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundBound:PO4
1xxiD01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundBound:ADPUnbound
1xxiG01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiH01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiI01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundBound:ADPUnbound
1njfA01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1njfB01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1njfC01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundBound:ADPUnbound
1njfD01UnboundUnboundUnboundUnbound
Analogue:ATGUnboundUnboundUnboundUnboundUnboundUnbound
1njgA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundAnalogue:SO4
1njgB01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundAnalogue:SO4
1jr3A02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3B02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3C02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhC02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhD02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhG02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhH02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhI02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiC02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiD02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiG02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiH02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiI02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3A03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3B03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3C03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhB03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhC03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhD03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhG03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhH03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhI03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiB03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiC03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiD03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiG03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiH03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiI03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1njfA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1njfB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1njfC02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1njfD02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1njgA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1njgB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3D01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhF01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiF01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjC01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjD01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqlBUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3D02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhF02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiF02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjC02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjD02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3D03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhF03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiF03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjC03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjD03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1a5tA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3E01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhE01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhJ01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiE01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiJ01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1a5tA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3E02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhE02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhJ02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiE02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiJ02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1a5tA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jr3E03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhE03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxhJ03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiE03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1xxiJ03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1em8BUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1em8DUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1em8AUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1em8CUnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjB01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqlA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1mmiA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1mmiB01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1ok7A01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1ok7B01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1unnA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1unnB01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2polA01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2polB01UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqlA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1mmiA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1mmiB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1ok7A02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1ok7B02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1unnA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1unnB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2polA02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2polB02UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqjB03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1jqlA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1mmiA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1mmiB03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1ok7A03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1ok7B03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1unnA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
1unnB03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2polA03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound
2polB03UnboundUnboundUnboundUnbound
UnboundUnboundUnboundUnboundUnboundUnboundUnbound

Active-site residues
pdbCatalytic residuesCofactor-binding residues
1j53AGLU 14;HIS 162
ASP 12;GLU 14;ASP 167(divalent metal binding)
1j54AGLU 14;HIS 162
ASP 12;GLU 14;ASP 167(divalent metal binding)
1du2A

2ae9A

1jr3A01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1jr3B01
CYS 2064;CYS 73;CYS 76;CYS 79(Zinc binding)
1jr3C01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxhB01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxhC01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxhD01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxhG01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxhH01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxhI01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxiB01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxiC01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxiD01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxiG01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxiH01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1xxiI01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1njfA01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1njfB01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1njfC01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1njfD01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1njgA01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1njgB01
CYS   64;CYS 73;CYS 76;CYS 79(Zinc binding)
1jr3A02

1jr3B02

1jr3C02

1xxhB02

1xxhC02

1xxhD02

1xxhG02

1xxhH02

1xxhI02

1xxiB02

1xxiC02

1xxiD02

1xxiG02

1xxiH02

1xxiI02

1jr3A03

1jr3B03

1jr3C03

1xxhB03

1xxhC03

1xxhD03

1xxhG03

1xxhH03

1xxhI03

1xxiB03

1xxiC03

1xxiD03

1xxiG03

1xxiH03

1xxiI03

1njfA02

1njfB02

1njfC02

1njfD02

1njgA02

1njgB02

1jr3D01

1xxhA01

1xxhF01

1xxiA01

1xxiF01

1jqjC01

1jqjD01

1jqlB

1jr3D02

1xxhA02

1xxhF02

1xxiA02

1xxiF02

1jqjC02

1jqjD02

1jr3D03

1xxhA03

1xxhF03

1xxiA03

1xxiF03

1jqjC03

1jqjD03

1a5tA01
CYS 50;CYS 59;CYS 62;CYS 65(Zinc binding)
1jr3E01
CYS 50;CYS 59;CYS 62;CYS 65(Zinc binding)
1xxhE01
CYS 50;CYS 59;CYS 62;CYS 65(Zinc binding)
1xxhJ01
CYS 50;CYS 59;CYS 62;CYS 65(Zinc binding)
1xxiE01
CYS 50;CYS 59;CYS 62;CYS 65(Zinc binding)
1xxiJ01
CYS 50;CYS 59;CYS 62;CYS 65(Zinc binding)
1a5tA02

1jr3E02

1xxhE02

1xxhJ02

1xxiE02

1xxiJ02

1a5tA03

1jr3E03

1xxhE03

1xxhJ03

1xxiE03

1xxiJ03

1em8B

1em8D

1em8A

1em8C

1jqjA01

1jqjB01

1jqlA01

1mmiA01

1mmiB01

1ok7A01

1ok7B01

1unnA01

1unnB01

2polA01

2polB01

1jqjA02

1jqjB02

1jqlA02

1mmiA02

1mmiB02

1ok7A02

1ok7B02

1unnA02

1unnB02

2polA02

2polB02

1jqjA03

1jqjB03

1jqlA03

1mmiA03

1mmiB03

1ok7A03

1ok7B03

1unnA03

1unnB03

2polA03

2polB03


References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[34]Fig.5, p.540-543

references
[1]
PubMed ID7118945
JournalJ Biol Chem
Year1982
Volume257
Pages12310-5
AuthorsJohanson KO, McHenry CS
TitleThe beta subunit of the DNA polymerase III holoenzyme becomes inaccessible to antibody after formation of an initiation complex with primed DNA.
[2]
PubMed ID3037519
JournalProc Natl Acad Sci U S A
Year1987
Volume84
Pages4389-92
AuthorsMaki H, Kornberg A
TitleProofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits.
[3]
PubMed ID3283128
JournalJ Biol Chem
Year1988
Volume263
Pages6570-8
AuthorsMaki H, Maki S, Kornberg A
TitleDNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites.
[4]
PubMed ID2243096
JournalJ Biol Chem
Year1990
Volume265
Pages20356-63
AuthorsGriep MA, McHenry CS
TitleDissociation of the DNA polymerase III holoenzyme beta 2 subunits is accompanied by conformational change at distal cysteines 333.
[5]
PubMed ID1918028
JournalJ Biol Chem
Year1991
Volume266
Pages19127-30
AuthorsMcHenry CS
TitleDNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex.
[6]
CommentsREVIEW.
Medline ID92246902
PubMed ID1575709
JournalBioessays
Year1992
Volume14
Pages105-11
AuthorsO'Donnell M
TitleAccessory protein function in the DNA polymerase III holoenzyme from E. coli.
Related Swiss-protP28631
[7]
PubMed ID1740452
JournalJ Biol Chem
Year1992
Volume267
Pages4045-53
AuthorsZechner EL, Wu CA, Marians KJ
TitleCoordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. II. Frequency of primer synthesis and efficiency of primer utilization control Okazaki fragment size.
[8]
CommentsX-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS)
Medline ID92257585
PubMed ID1349852
JournalCell
Year1992
Volume69
Pages425-37
AuthorsKong XP, Onrust R, O'Donnell M, Kuriyan J
TitleThree-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp.
Related PDB2pol
Related Swiss-protP00583
[9]
CommentsCHARACTERIZATION.
Medline ID93280137
PubMed ID8505304
JournalJ Biol Chem
Year1993
Volume268
Pages11766-72
AuthorsOnrust R, O'Donnell M
TitleDNA polymerase III accessory proteins. II. Characterization of delta and delta'.
Related Swiss-protP28631
[10]
PubMed ID7903401
JournalJ Mol Biol
Year1993
Volume234
Pages915-25
AuthorsKuriyan J, O'Donnell M
TitleSliding clamps of DNA polymerases.
[11]
PubMed ID8505305
JournalJ Biol Chem
Year1993
Volume268
Pages11779-84
AuthorsXiao H, Dong Z, O'Donnell M
TitleDNA polymerase III accessory proteins. IV. Characterization of chi and psi.
[12]
PubMed ID8001157
JournalCell
Year1994
Volume79
Pages1233-43
AuthorsKrishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J
TitleCrystal structure of the eukaryotic DNA polymerase processivity factor PCNA.
[13]
PubMed ID8300534
JournalJ Bacteriol
Year1994
Volume176
Pages815-21
AuthorsSlater SC, Lifsics MR, O'Donnell M, Maurer R
TitleholE, the gene coding for the theta subunit of DNA polymerase III of Escherichia coli: characterization of a holE mutant and comparison with a dnaQ (epsilon-subunit) mutant.
[14]
PubMed ID7768937
JournalJ Biol Chem
Year1995
Volume270
Pages13358-65
AuthorsNaktinis V, Onrust R, Fang L, O'Donnell M
TitleAssembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp.
[15]
PubMed ID7768938
JournalJ Biol Chem
Year1995
Volume270
Pages13366-77
AuthorsOnrust R, Finkelstein J, Turner J, Naktinis V, O'Donnell M
TitleAssembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader.
[16]
PubMed ID7768939
JournalJ Biol Chem
Year1995
Volume270
Pages13378-83
AuthorsXiao H, Naktinis V, O'Donnell M
TitleAssembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. IV. ATP-binding site mutants identify the clamp loader.
[17]
PubMed ID7478986
JournalNucleic Acids Res
Year1995
Volume23
Pages3613-20
AuthorsKelman Z, O'Donnell M
TitleStructural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps.
[18]
CommentsX-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS).
Medline ID98028572
PubMed ID9363942
JournalCell
Year1997
Volume91
Pages335-45
AuthorsGuenther B, Onrust R, Sali A, O'Donnell M, Kuriyan J
TitleCrystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III.
Related PDB1a5t
Related Swiss-protP28631
[19]
PubMed ID9346941
JournalJ Biol Chem
Year1997
Volume272
Pages27919-30
AuthorsBloom LB, Chen X, Fygenson DK, Turner J, O'Donnell M, Goodman MF
TitleFidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies.
[20]
PubMed ID9753470
JournalBiochemistry
Year1998
Volume37
Pages13807-15
AuthorsTerashima I, Suzuki N, Dasaradhi L, Tan CK, Downey KM, Shibutani S
TitleTranslesional synthesis on DNA templates containing an estrogen quinone-derived adduct: N2-(2-hydroxyestron-6-yl)-2'-deoxyguanosine and N6-(2-hydroxyestron-6-yl)-2'-deoxyadenosine.
[21]
PubMed ID9685491
JournalNucleic Acids Res
Year1998
Volume26
Pages3746-52
AuthorsAravind L, Koonin EV
TitlePhosphoesterase domains associated with DNA polymerases of diverse origins.
[22]
PubMed ID11101526
JournalEMBO J
Year2000
Volume19
Pages6536-45
AuthorsPritchard AE, Dallmann HG, Glover BP, McHenry CS
TitleA novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'.
[23]
CommentsX-ray crystallography
PubMed ID10794414
JournalProtein Sci
Year2000
Volume9
Pages721-33
AuthorsKeniry MA, Berthon HA, Yang JY, Miles CS, Dixon NE
TitleNMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli.
Related PDB1du2
[24]
CommentsX-ray crystallography
PubMed ID11525729
JournalCell
Year2001
Volume106
Pages429-41
AuthorsJeruzalmi D, O'Donnell M, Kuriyan J
TitleCrystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III.
Related PDB1jr3
[25]
PubMed ID11518714
JournalJ Biol Chem
Year2001
Volume276
Pages40668-79
AuthorsSong MS, Dallmann HG, McHenry CS
TitleCarboxyl-terminal domain III of the delta' subunit of the DNA polymerase III holoenzyme binds delta.
[26]
PubMed ID11606586
JournalJ Biol Chem
Year2001
Volume276
Pages48709-15
AuthorsSong MS, McHenry CS
TitleCarboxyl-terminal domain III of the delta' subunit of DNA polymerase III holoenzyme binds DnaX and supports cooperative DnaX complex assembly.
[27]
PubMed ID11572866
JournalJ Biol Chem
Year2001
Volume276
Pages47185-94
AuthorsLeu FP, O'Donnell M
TitleInterplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme.
[28]
PubMed ID11279099
JournalJ Biol Chem
Year2001
Volume276
Pages19182-9
AuthorsStewart J, Hingorani MM, Kelman Z, O'Donnell M
TitleMechanism of beta clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme.
[29]
PubMed ID11719243
JournalCurr Biol
Year2001
Volume11
PagesR935-46
AuthorsO'Donnell M, Jeruzalmi D, Kuriyan J
TitleClamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC.
[30]
PubMed ID11525728
JournalCell
Year2001
Volume106
Pages417-28
AuthorsJeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O'Donnell M, Kuriyan J
TitleMechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III.
Related PDB1jqj,1jql
[31]
PubMed ID11859073
JournalJ Biol Chem
Year2002
Volume277
Pages17334-48
AuthorsBruck I, Yuzhakov A, Yurieva O, Jeruzalmi D, Skangalis M, Kuriyan J, O'Donnell M
TitleAnalysis of a multicomponent thermostable DNA polymerase III replicase from an extreme thermophile.
[32]
PubMed ID11809766
JournalJ Biol Chem
Year2002
Volume277
Pages13246-56
AuthorsBullard JM, Pritchard AE, Song MS, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS
TitleA three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex.
[33]
PubMed ID11772007
JournalBiochemistry
Year2002
Volume41
Pages94-110
AuthorsDeRose EF, Li D, Darden T, Harvey S, Perrino FW, Schaaper RM, London RE
TitleModel for the catalytic domain of the proofreading epsilon subunit of Escherichia coli DNA polymerase III based on NMR structural data.
[34]
PubMed ID11937058
JournalStructure
Year2002
Volume10
Pages535-46
AuthorsHamdan S, Carr PD, Brown SE, Ollis DL, Dixon NE
TitleStructural basis for proofreading during replication of the Escherichia coli chromosome.
Related PDB1j53,1j54
[35]
PubMed ID14592985
JournalEMBO J
Year2003
Volume22
Pages5883-92
AuthorsBunting KA, Roe SM, Pearl LH
TitleStructural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp.
Related PDB1unn
[36]
PubMed ID12832762
JournalActa Crystallogr D Biol Crystallogr
Year2003
Volume59
Pages1192-9
AuthorsOakley AJ, Prosselkov P, Wijffels G, Beck JL, Wilce MC, Dixon NE
TitleFlexibility revealed by the 1.85 A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III.
Related PDB1mmi
[37]
PubMed ID12623013
JournalStructure
Year2003
Volume11
Pages253-63
AuthorsPodobnik M, Weitze TF, O'Donnell M, Kuriyan J
TitleNucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit.
Related PDB1njf,1njg
[38]
PubMed ID14717711
JournalEur J Biochem
Year2004
Volume271
Pages439-49
AuthorsGulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J
TitleCrystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex.
Related PDB1em8
[39]
PubMed ID14610068
JournalJ Biol Chem
Year2004
Volume279
Pages4386-93
AuthorsSnyder AK, Williams CR, Johnson A, O'Donnell M, Bloom LB
TitleMechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the gamma complex.
[40]
PubMed ID15037068
JournalJ Mol Biol
Year2004
Volume336
Pages1047-59
AuthorsGoedken ER, Levitus M, Johnson A, Bustamante C, O'Donnell M, Kuriyan J
TitleFluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding.
[41]
PubMed ID14729336
JournalJ Mol Biol
Year2004
Volume335
Pages1187-97
AuthorsBurnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P
TitleStructural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases.
Related PDB1ok7
[42]
PubMed ID15556993
JournalProc Natl Acad Sci U S A
Year2004
Volume101
Pages16750-5
AuthorsKazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J
TitleStructural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex.
Related PDB1xxh,1xxi
[43]
PubMed ID16199579
JournalJ Bacteriol
Year2005
Volume187
Pages7081-9
AuthorsMueller GA, Kirby TW, DeRose EF, Li D, Schaaper RM, London RE
TitleNuclear magnetic resonance solution structure of the Escherichia coli DNA polymerase III theta subunit.
Related PDB2ae9

comments
This enzyme belongs to the DNA polymerase type-C family.
This DNA enzyme is composed of 10 different types of subunits.
According to the literature, these subunits are organized into 3 functionally essential subassemblies:
(a) the pol III core (subunits alpha, epsilon and theta)
(b) the clamp-loading complex (subunits delta, delta', psi and chi, and either or both of gamma and tau)
(c) the beta sliding clamp processivity factor (subunit beta)
The pol III core contains the polymerase and the 3'-5' exonuclease proofreading activities. The polymerase (a) is tethered to the template via the sliding clamp processivity factor (c).
The clamp-loading complex (b) assembles the beta processivity factor (c) onto the primer template and plays a central role in the organization and communication at the replication fork.
The composition of the enzyme is as follows:
(a) (alpha, epsilon, theta)[2]
(b) (gamma/tau)[3]-(delta, delta', psi, chi)[2]
(c) (beta[2])[2]
The roles of the subunits are as follows:
(a) (alpha, epsilon, theta)[2];
alpha subunit: A polymerase subunit.
epsilon subunit: A proofreading subunit, with 3'-5' exonuclease activity.
theta subunit: This subunit might maintain fidelity.
(b) (gamma/tau)[3]-(delta, delta', psi, chi)[2];
gamma subunit: This subunit is a short vaiant of dnaX and interacts with delta subunit to transfer the beta subunit on the DNA. Moreover, this subunit has ATPase activity.
tau subunit: This subunit is a long vaiant of dnaX, and also a scaffold to help in the dimerization of the core complex.
delta subunit: This subunit interacts with gamma subunit to transfer the beta subunit on the DNA.
delta' subunit: The function is unknown.
chi subunit: The function is unknown.
psi subunit: The function is unknown.
(c) (beta[2])[2];
beta subunit: This subunit seems to be required for initiation of replication.

createdupdated
2005-03-302009-02-26


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2010)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)

© Computational Biology Research Center, AIST, 2004 All Rights Reserved.