EzCatDB: T00004

DB codeT00004
CATH domainDomain 13.50.50.60
Domain 24.10.450.10
Domain 33.30.560.10Catalytic domain
E.C.1.1.3.4
CSA1gal

CATH domainRelated DB codes (homologues)
3.50.50.60M00163,D00015,D00041,D00042,D00045,D00064,D00071,T00015,T00017,T00025,T00211,T00213,T00233,T00242

Enzyme Name
Swiss-protKEGG

P13006P81156
Protein nameGlucose oxidaseGlucose oxidaseglucose oxidase
glucose oxyhydrase
corylophyline
penatin
glucose aerodehydrogenase
microcid
beta-D-glucose oxidase
D-glucose oxidase
D-glucose-1-oxidase
beta-D-glucose:quinone oxidoreductase
glucose oxyhydrase
deoxin-1
GOD
SynonymsEC 1.1.3.4
Glucose oxyhydrase
GOD
Beta-D-glucose:oxygen 1-oxido-reductase
EC 1.1.3.4
Glucose oxyhydrase
GOD
Beta-D-glucose:oxygen 1-oxido-reductase

KEGG pathways
MAP codePathways
MAP00030Pentose phosphate pathway

Swiss-prot:Accession NumberP13006P81156
Entry nameGOX_ASPNGGOX_PENAG
ActivityBeta-D-glucose + O(2) = D-glucono-1,5-lactone + H(2)O(2).Beta-D-glucose + O(2) = D-glucono-1,5-lactone + H(2)O(2).
SubunitHomodimer.Homodimer.
Subcellular locationSecreted.Secreted.
CofactorFAD.FAD.


CofactorsSubstratesProducts
KEGG-idC00016C00221C00007C00198C00027
CompoundFADbeta-D-GlucoseO2D-Glucono-1,5-lactoneH2O2
Typeamide group,amine group,aromatic ring (only carbon atom),aromatic ring (with nitrogen atoms),carbohydrate,nucleotidecarbohydrateotherscarbohydrateothers
1cf3A01Bound:FADUnboundUnboundUnboundUnbound
1galA01Bound:FADUnboundUnboundUnboundUnbound
1gpeA01Bound:FADUnboundUnboundUnboundUnbound
1gpeB01UnboundUnboundUnboundUnboundUnbound
1cf3A02UnboundUnboundUnboundUnboundUnbound
1galA02UnboundUnboundUnboundUnboundUnbound
1gpeA02UnboundUnboundUnboundUnboundUnbound
1gpeB02UnboundUnboundUnboundUnboundUnbound
1cf3A03UnboundUnboundUnboundUnboundUnbound
1galA03UnboundUnboundUnboundUnboundUnbound
1gpeA03UnboundUnboundUnboundUnboundUnbound
1gpeB03UnboundUnboundUnboundUnboundUnbound

Active-site residues
resource
Swiss-prot;P13006, P81156 & literature [16], [17], [18], [28], [29]
pdbCatalytic residuesCofactor-binding residues
1cf3A01
THR 30;GLU 50;VAL 250;GLY 549(FAD binding)
1galA01
THR 30;GLU 50;VAL 250;GLY 549(FAD binding)
1gpeA01
THR 35;GLU 55;VAL 254;GLY 553(FAD binding)
1gpeB01
THR 35;GLU 55;VAL 254;GLY 553(FAD binding)
1cf3A02

1galA02

1gpeA02

1gpeB02

1cf3A03GLU 412;HIS 516;HIS 559

1galA03GLU 412;HIS 516;HIS 559

1gpeA03GLU 416;HIS 520;HIS 563

1gpeB03GLU 416;HIS 520;HIS 563


References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[11]Fig.1, p.164-165
[15]Fig.1, p.433-434, p.435-437, Fig.9
[16]p.973-975
[17]Scheme 1, p.8572-8573, p.8577-8578
[23]p.3
[28]p.81-82
[29]Fig. 3, p.737-738, Fig.4, p.739-742, p.742-748

references
[1]
PubMed ID7213598
JournalBiochemistry
Year1981
Volume20
Pages617-21
AuthorsJames TL, Edmondson DE, Husain M
TitleGlucose oxidase contains a disubstituted phosphorus residue. Phosphorus-31 nuclear magnetic resonance studies of the flavin and nonflavin phosphate residues.
[2]
PubMed ID6149727
JournalArch Biochem Biophys
Year1984
Volume234
Pages468-75
AuthorsKido T, Soda K
TitleOxidation of anionic nitroalkanes by flavoenzymes, and participation of superoxide anion in the catalysis.
[3]
PubMed ID2505251
JournalProc Natl Acad Sci U S A
Year1989
Volume86
Pages6493-7
AuthorsJohnson JL, London RE, Rajagopalan KV
TitleCovalently bound phosphate residues in bovine milk xanthine oxidase and in glucose oxidase from Aspergillus niger: a reevaluation.
[4]
PubMed ID2342102
JournalJ Mol Biol
Year1990
Volume213
Pages207-9
AuthorsKalisz HM, Hecht HJ, Schomburg D, Schmid RD
TitleCrystallization and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from Aspergillus niger.
[5]
PubMed ID1772443
JournalBiochem Int
Year1991
Volume25
Pages181-90
AuthorsTakegawa K, Kondo A, Iwamoto H, Fujiwara K, Hosokawa Y, Kato I, Hiromi K, Iwahara S
TitleNovel oligomannose-type sugar chains derived from glucose oxidase of Aspergillus niger.
[6]
PubMed ID2013289
JournalEur J Biochem
Year1991
Volume196
Pages663-72
AuthorsSanner C, Macheroux P, Ruterjans H, Muller F, Bacher A
Title15N- and 13C-NMR investigations of glucose oxidase from Aspergillus niger.
[7]
PubMed ID1390684
JournalBiochemistry
Year1992
Volume31
Pages8972-7
AuthorsSierks MR, Bock K, Refn S, Svensson B
TitleActive site similarities of glucose dehydrogenase, glucose oxidase, and glucoamylase probed by deoxygenated substrates.
[8]
PubMed ID1542121
JournalJ Mol Biol
Year1992
Volume223
Pages811-4
AuthorsCavener DR
TitleGMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities.
[9]
PubMed ID1538394
JournalJ Mol Biol
Year1992
Volume223
Pages1167-9
AuthorsHendle J, Hecht HJ, Kalisz HM, Schmid RD, Schomburg D
TitleCrystallization and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from Penicillium amagasakiense.
[10]
PubMed ID8357574
JournalBiosens Bioelectron
Year1993
Volume8
Pages197-203
AuthorsHecht HJ, Schomburg D, Kalisz H, Schmid RD
TitleThe 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme.
[11]
CommentsX-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS).
Medline ID93132782
PubMed ID8421298
JournalJ Mol Biol
Year1993
Volume229
Pages153-72
AuthorsHecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D
TitleCrystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution.
Related PDB1gal
Related Swiss-protP13006
[12]
PubMed ID9054567
JournalBiochemistry
Year1997
Volume36
Pages2603-11
AuthorsKohen A, Jonsson T, Klinman JP
TitleEffects of protein glycosylation on catalysis: changes in hydrogen tunneling and enthalpy of activation in the glucose oxidase reaction.
[13]
PubMed ID9463887
JournalEur Biophys J
Year1998
Volume27
Pages19-25
AuthorsHaouz A, Twist C, Zentz C, Tauc P, Alpert B
TitleDynamic and structural properties of glucose oxidase enzyme.
[14]
PubMed ID9436625
JournalFree Radic Biol Med
Year1998
Volume24
Pages155-60
AuthorsMetosh-Dickey CA, Mason RP, Winston GW
TitleSingle electron reduction of xenobiotic compounds by glucose oxidase from Aspergillus niger.
[15]
PubMed ID9834905
JournalJ Comput Aided Mol Des
Year1998
Volume12
Pages425-40
AuthorsMeyer M, Wohlfahrt G, Knablein J, Schomburg D
TitleAspects of the mechanism of catalysis of glucose oxidase: a docking, molecular mechanics and quantum chemical study.
[16]
CommentsX-RAY CRYSTALLOGRAPHY (1.8 ANGSTROMS).
Medline ID99234348
PubMed ID10216293
JournalActa Crystallogr D Biol Crystallogr
Year1999
Volume55
Pages969-77
AuthorsWohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ
Title1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes.
Related PDB1gpe,1cf3
Related Swiss-protP13006,P81156
[17]
PubMed ID10387105
JournalBiochemistry
Year1999
Volume38
Pages8572-81
AuthorsSu Q, Klinman JP
TitleNature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
[18]
PubMed ID10749686
JournalBiochem J
Year2000
Volume347
Pages553-9
AuthorsWitt S, Wohlfahrt G, Schomburg D, Hecht HJ, Kalisz HM
TitleConserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of beta-D-glucose.
[19]
PubMed ID10995249
JournalBiochemistry
Year2000
Volume39
Pages11808-17
AuthorsPorter DJ, Voet JG, Bright HJ
TitleActive site generation of a protonically unstable suicide substrate from a stable precursor: glucose oxidase and dibromonitromethane.
[20]
PubMed ID11329261
JournalBiochemistry
Year2001
Volume40
Pages1945-55
AuthorsAhmad A, Akhtar MS, Bhakuni V
TitleMonovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme.
[21]
PubMed ID11602248
JournalFEBS Lett
Year2001
Volume506
Pages216-20
AuthorsHaouz A, Glandieres JM, Alpert B
TitleInvolvement of protein dynamics in enzyme stability. The case of glucose oxidase.
[22]
PubMed ID11720516
JournalInorg Chem
Year2001
Volume40
Pages6529-32
AuthorsRyabov AD, Sukharev VS, Alexandrova L, Le Lagadec R, Pfeffer M
TitleNew synthesis and new bio-application of cyclometalated ruthenium(II) complexes for fast mediated electron transfer with peroxidase and glucose oxidase.
[23]
PubMed ID11191216
JournalJ Biol Inorg Chem
Year2001
Volume6
Pages1-13
AuthorsKlinman JP
TitleLife as aerobes: are there simple rules for activation of dioxygen by enzymes?
[24]
PubMed ID11592997
JournalProc Natl Acad Sci U S A
Year2001
Volume98
Pages11867-72
AuthorsZhong D, Zewail AH
TitleFemtosecond dynamics of flavoproteins: charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme.
[25]
PubMed ID12033948
JournalBiochemistry
Year2002
Volume41
Pages7142-9
AuthorsAkhtar MS, Ahmad A, Bhakuni V
TitleDivalent cation induced changes in structural properties of the dimeric enzyme glucose oxidase: dual effect of dimer stabilization and dissociation with loss of cooperative interactions in enzyme monomer.
[26]
PubMed ID12716878
JournalJ Biol Chem
Year2003
Volume278
Pages24324-33
AuthorsGouda MD, Singh SA, Rao AG, Thakur MS, Karanth NG
TitleThermal inactivation of glucose oxidase. Mechanism and stabilization using additives.
[27]
PubMed ID15013780
JournalFEBS Lett
Year2004
Volume561
Pages213-6
AuthorsHosseinkhani S, Ranjbar B, Naderi-Manesh H, Nemat-Gorgani M
TitleChemical modification of glucose oxidase: possible formation of molten globule-like intermediate structure.
[28]
PubMed ID15228088
JournalMol Cell Biochem
Year2004
Volume260
Pages69-83
AuthorsWohlfahrt G, Trivic S, Zeremski J, Pericin D, Leskovac V
TitleThe chemical mechanism of action of glucose oxidase from Aspergillus niger.
[29]
PubMed ID15694834
JournalInt J Biochem Cell Biol
Year2005
Volume37
Pages731-50
AuthorsLeskovac V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D
TitleGlucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors.

comments
According to the literature [29], this enzyme catalyzes two distinct reactions:
In reductive half-reaction, this enzyme catalyzes hydride transfer from glucose to FAD. In oxidative half-reaction, this enzyme catalyzes the production of peroxide from dioxygen. Moreover, this enzyme acts on quinone compounds in oxidative half-reaction.
(A) Hydride transfer from glucose to FAD, producing aldehyde and FADH2
(B) Hydride transfer from FADH2(reduced form) to O2, giving FAD and H2O2

createdupdated
2005-04-282009-02-26


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2010)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)

© Computational Biology Research Center, AIST, 2004 All Rights Reserved.