EzCatDB: T00215

DB codeT00215
CATH domainDomain 12.60.40.420Catalytic domain
Domain 22.60.40.420
Domain 32.60.40.420Catalytic domain
E.C.1.10.3.2
CSA1a65

CATH domainRelated DB codes (homologues)
2.60.40.420T00216,M00115,M00062,M00194

Enzyme Name
Swiss-protKEGG

Q12718Q96UT7Q9Y780Q6H9H7Q70KY3
Protein nameLaccase-2


Laccase-1laccase
urishiol oxidase
urushiol oxidase
p-diphenol oxidase
SynonymsEC 1.10.3.2
Benzenediol:oxygen oxidoreductase 2
Urishiol oxidase 2
Diphenol oxidase 2
Laccase I
Laccase B
EC 1.10.3.2
Laccase 1
EC 1.10.3.2
Laccase
EC 1.10.3.2
EC 1.10.3.2
Benzenediol:oxygen oxidoreductase 1
Urishiol oxidase 1
Diphenol oxidase 1
Ligninolytic phenoloxidase


Swiss-prot:Accession NumberQ12718Q96UT7Q9Y780Q6H9H7Q70KY3
Entry nameLAC2_TRAVEQ96UT7_TRAVEQ9Y780_COPCIQ6H9H7_9APHYLAC1_MELAO
Activity4 benzenediol + O(2) = 4 benzosemiquinone + 2 H(2)O.


4 benzenediol + O(2) = 4 benzosemiquinone + 2 H(2)O.
Subunit



Monomer.
Subcellular locationSecreted.



CofactorBinds 4 copper ions per monomer.


Binds 4 copper ions per monomer.


CofactorsSubstratesProductsintermediates
KEGG-idC00070C01785C00007C02389C00001
CompoundCopperBenzenediolO2BenzosemiquinoneH2O
Typeheavy metalaromatic ring (only carbon atom)othersaromatic ring (only carbon atom)H2O
1gycA01Bound:_CUUnboundUnboundUnbound
Unbound
1kyaA01Bound:_CUUnboundUnboundUnbound
Unbound
1kyaB01Bound:_CUUnboundUnboundUnbound
Unbound
1kyaC01Bound:_CUUnboundUnboundUnbound
Unbound
1kyaD01Bound:_CUUnboundUnboundUnbound
Unbound
1a65A01Bound:_CUUnboundUnboundUnbound
Unbound
1hfuA01Bound:_CUUnboundUnboundUnbound
Unbound
1v10A01Bound:_CUUnboundUnboundUnbound
Unbound
1gw0A01Bound:_CUUnboundUnboundUnbound
Unbound
1gw0B01Bound:_CUUnboundUnboundUnbound
Unbound
1gycA02UnboundUnboundUnboundUnbound
Unbound
1kyaA02UnboundUnboundUnboundUnbound
Unbound
1kyaB02UnboundUnboundUnboundUnbound
Unbound
1kyaC02UnboundUnboundUnboundUnbound
Unbound
1kyaD02UnboundUnboundUnboundUnbound
Unbound
1a65A02UnboundUnboundUnboundUnbound
Unbound
1hfuA02UnboundUnboundUnboundUnbound
Unbound
1v10A02UnboundUnboundUnboundUnbound
Unbound
1gw0A02UnboundUnboundUnboundUnbound
Unbound
1gw0B02UnboundUnboundUnboundUnbound
Unbound
1gycA03Bound:3x_CUUnboundUnboundUnbound
Unbound
1kyaA03Bound:3x_CUAnalogue:XYDUnboundUnbound
Unbound
1kyaB03Bound:3x_CUAnalogue:XYDUnboundUnbound
Unbound
1kyaC03Bound:3x_CUAnalogue:XYDUnboundUnbound
Unbound
1kyaD03Bound:3x_CUAnalogue:XYDUnboundUnbound
Unbound
1a65A03Bound:2x_CUUnboundUnboundUnbound
Intermediate-bound:__O
1hfuA03Bound:2x_CUUnboundUnboundUnbound
Unbound
1v10A03Bound:3x_CUUnboundUnboundUnbound
Unbound
1gw0A03Bound:3x_CUUnboundBound:OXYUnbound
Unbound
1gw0B03Bound:3x_CUUnboundBound:OXYUnbound
Unbound

Active-site residues
resource
literature [2], [6]
pdbCatalytic residuesCofactor-binding residues
1gycA01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1kyaA01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1kyaB01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1kyaC01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1kyaD01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1a65A01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1hfuA01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1v10A01
HIS 111(Copper-3a);HIS 66;HIS 109(Copper-3b);HIS 64(Copper-2)
1gw0A01
HIS 140(Copper-3a);HIS 95;HIS 138(Copper-3b);HIS 93(Copper-2)
1gw0B01
HIS 140(Copper-3a);HIS 95;HIS 138(Copper-3b);HIS 93(Copper-2)
1gycA02

1kyaA02

1kyaB02

1kyaC02

1kyaD02

1a65A02

1hfuA02

1v10A02

1gw0A02

1gw0B02

1gycA03HIS 452;CYS 453;HIS 454
HIS 395;CYS 453;HIS 458(Copper-1);HIS 400;HIS 452(Copper-3a);HIS 454(Copper-3b);HIS 398(Copper-2)
1kyaA03HIS 452;CYS 453;HIS 454
HIS 395;CYS 453;HIS 458(Copper-1);HIS 400;HIS 452(Copper-3a);HIS 454(Copper-3b);HIS 398(Copper-2)
1kyaB03HIS 452;CYS 453;HIS 454
HIS 395;CYS 453;HIS 458(Copper-1);HIS 400;HIS 452(Copper-3a);HIS 454(Copper-3b);HIS 398(Copper-2)
1kyaC03HIS 452;CYS 453;HIS 454
HIS 395;CYS 453;HIS 458(Copper-1);HIS 400;HIS 452(Copper-3a);HIS 454(Copper-3b);HIS 398(Copper-2)
1kyaD03HIS 452;CYS 453;HIS 454
HIS 395;CYS 453;HIS 458(Copper-1);HIS 400;HIS 452(Copper-3a);HIS 454(Copper-3b);HIS 398(Copper-2)
1a65A03HIS 451;CYS 452;HIS 453
HIS 396;CYS 452;HIS 457(Copper-1);HIS 401;HIS 451(Copper-3a);HIS 453(Copper-3b);HIS 399(Copper-2)
1hfuA03HIS 451;CYS 452;HIS 453
HIS 396;CYS 452;HIS 457(Copper-1);HIS 401;HIS 451(Copper-3a);HIS 453(Copper-3b);HIS 399(Copper-2)
1v10A03HIS 451;CYS 452;HIS 453
HIS 396;CYS 452;HIS 457(Copper-1);HIS 401;HIS 451(Copper-3a);HIS 453(Copper-3b);HIS 399(Copper-2)
1gw0A03HIS 502;CYS 503;HIS 504
HIS 431;CYS 503;HIS 508(Copper-1);HIS 436;HIS 502(Copper-3a);HIS 504(Copper-3b);HIS 434(Copper-2)
1gw0B03HIS 502;CYS 503;HIS 504
HIS 431;CYS 503;HIS 508(Copper-1);HIS 436;HIS 502(Copper-3a);HIS 504(Copper-3b);HIS 434(Copper-2)

References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[2]Fig.19, p.197-203
[5]Fig.9, Fig. 10
[6]p.314
[7]Fig. 10
[8]FIG. 7, p.32723-32724
[14]p.7330-7331
[17]

[18]p.553-554
[24]Scheme 2, p.192
[25]p.1525-1528
[26]p.94-95

references
[1]
PubMed ID1647440
JournalJ Inorg Biochem
Year1991
Volume41
Pages253-60
AuthorsMeadows KA, Morie-Bebel MM, McMillin DR
TitleCopper transfer from Rhus vernicifera laccase.
[2]
Medline ID92194315
PubMed ID1548698
JournalJ Mol Biol
Year1992
Volume224
Pages179-205
AuthorsMesserschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi-Agro A
TitleRefined crystal structure of ascorbate oxidase at 1.9 A resolution.
[3]
PubMed ID7704270
JournalMicrobiology
Year1995
Volume141
Pages393-8
AuthorsYoun HD, Kim KJ, Maeng JS, Han YH, Jeong IB, Jeong G, Kang SO, Hah YC
TitleSingle electron transfer by an extracellular laccase from the white-rot fungus Pleurotus ostreatus.
[4]
PubMed ID9693103
JournalBiochem J
Year1998
Volume334
Pages63-70
AuthorsXu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI
TitleSite-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.
[5]
PubMed ID9602107
JournalBiochim Biophys Acta
Year1998
Volume1384
Pages160-70
AuthorsHuang HW, Sakurai T, Monjushiro H, Takeda S
TitleMagnetic studies of the trinuclear center in laccase and ascorbate oxidase approached by EPR spectroscopy and magnetic susceptibility measurements.
[6]
CommentsX-ray crystallography
PubMed ID9546223
JournalNat Struct Biol
Year1998
Volume5
Pages310-6
AuthorsDucros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ
TitleCrystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution.
Related PDB1a65
[7]
PubMed ID10583375
JournalEur J Biochem
Year1999
Volume266
Pages820-30
AuthorsGromov I, Marchesini A, Farver O, Pecht I, Goldfarb D
TitleAzide binding to the trinuclear copper center in laccase and ascorbate oxidase.
[8]
PubMed ID10551829
JournalJ Biol Chem
Year1999
Volume274
Pages32718-24
AuthorsHuang H, Zoppellaro G, Sakurai T
TitleSpectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen by Rhus vernicifera laccase.
[9]
CommentsX-ray crystallography
PubMed ID11173497
JournalActa Crystallogr D Biol Crystallogr
Year2001
Volume57
Pages333-6
AuthorsDucros V, Brzozowski AM, Wilson KS, Ostergaard P, Schneider P, Svendson A, Davies GJ
TitleStructure of the laccase from Coprinus cinereus at 1.68 A resolution: evidence for different 'type 2 Cu-depleted' isoforms.
Related PDB1hfu
[10]
PubMed ID11703175
JournalBiochemistry (Mosc)
Year2001
Volume66
Pages960-6
AuthorsKoroleva OV, Stepanova EV, Gavrilova VP, Biniukov VI, Pronin AM
TitleComparative characterization of methods for removal of Cu(II) from the active sites of fungal laccases.
[11]
PubMed ID11554598
JournalBioresour Technol
Year2001
Volume80
Pages29-36
AuthorsAktas N, Cicek H, Unal AT, Kibarer G, Kolankaya N, Tanyolac A
TitleReaction kinetics for laccase-catalyzed polymerization of 1-naphthol.
[12]
PubMed ID11192701
JournalJ Inorg Biochem
Year2001
Volume83
Pages67-75
AuthorsBonomo RP, Cennamo G, Purrello R, Santoro AM, Zappala R
TitleComparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity.
[13]
PubMed ID11565899
JournalJ Protein Chem
Year2001
Volume20
Pages191-201
AuthorsGarzillo AM, Colao MC, Buonocore V, Oliva R, Falcigno L, Saviano M, Santoro AM, Zappala R, Bonomo RP, Bianco C, Giardina P, Palmieri G, Sannia G
TitleStructural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii.
[14]
PubMed ID12044164
JournalBiochemistry
Year2002
Volume41
Pages7325-33
AuthorsBertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C
TitleCrystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.
Related PDB1kya
[15]
PubMed ID12445477
JournalBiochim Biophys Acta
Year2002
Volume1601
Pages155-62
AuthorsRagusa S, Cambria MT, Pierfederici F, Scire A, Bertoli E, Tanfani F, Cambria A
TitleStructure-activity relationship on fungal laccase from Rigidoporus lignosus: a Fourier-transform infrared spectroscopic study.
[16]
PubMed ID11884407
JournalJ Biol Chem
Year2002
Volume277
Pages18849-59
AuthorsMartins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO
TitleMolecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat.
[17]
PubMed ID12163489
JournalJ Biol Chem
Year2002
Volume277
Pages37663-9
AuthorsPiontek K, Antorini M, Choinowski T
TitleCrystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers.
Related PDB1gyc
[18]
PubMed ID12118243
JournalNat Struct Biol
Year2002
Volume9
Pages601-5
AuthorsHakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J
TitleCrystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site.
Related PDB1gw0
[19]
PubMed ID12126701
JournalPhytochemistry
Year2002
Volume60
Pages551-65
AuthorsMayer AM, Staples RC
TitleLaccase: new functions for an old enzyme.
[20]
PubMed ID14574106
JournalAntonie Van Leeuwenhoek
Year2003
Volume84
Pages289-99
AuthorsValderrama B, Oliver P, Medrano-Soto A, Vazquez-Duhalt R
TitleEvolutionary and structural diversity of fungal laccases.
[21]
PubMed ID12800133
JournalBiotechnol Bioeng
Year2003
Volume83
Pages386-94
AuthorsKumar SV, Phale PS, Durani S, Wangikar PP
TitleCombined sequence and structure analysis of the fungal laccase family.
[22]
PubMed ID12817956
JournalInorg Chem
Year2003
Volume42
Pages4006-17
AuthorsPalmer AE, Szilagyi RK, Cherry JR, Jones A, Xu F, Solomon EI
TitleSpectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site.
[23]
PubMed ID12637519
JournalJ Biol Chem
Year2003
Volume278
Pages19416-25
AuthorsEnguita FJ, Martins LO, Henriques AO, Carrondo MA
TitleCrystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties.
[24]
PubMed ID12929410
JournalOrg Biomol Chem
Year2003
Volume1
Pages191-7
AuthorsBaiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P
TitlePromoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems.
[25]
PubMed ID15364578
JournalJ Mol Biol
Year2004
Volume342
Pages1519-31
AuthorsGaravaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D'Ambrosio C, Scaloni A, Rizzi M
TitleThe structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair.
Related PDB1v10
[26]
PubMed ID15036303
JournalMicron
Year2004
Volume35
Pages93-6
AuthorsClaus H
TitleLaccases: structure, reactions, distribution.

comments
Coppers can be classified into three types (see [5]):
Type I copper (blue copper); Copper-1 in this enzyme
Type II copper (non-blue copper); Copper-2
Type III copper (EPR-non-detectable copper); Copper-3a & copper-3b in this enzyme.
The copper-2, -3a and -3b form a trinuclear copper site, to which an oxygen is bound, whereas the cooper-1 is a monocuclear copper site, to which an organic substrate is bound (see [2] & [6]).
This reaction catalyzes the following reactions (see [2] and [6]):
(A) Oxidation of organic substrate at mononuclear coper site:
(B) Electron transfer from mononuclear copper site to trinuclear copper site:
(C) O2 reduction to produce H2O at trinuclear copper site:

createdupdated
2005-04-152009-10-01


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2010)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)

© Computational Biology Research Center, AIST, 2004 All Rights Reserved.